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Abstract

It has recently been shown that a second-order linear nonhomogeneous
differential equation is associated with a surface with an isothermic
representation of their lines of curvature (L-isothermic surface) (Schief et al
2007 J. Math. Phys. 48 073510). The 6-parameter group SL(2, C) acting
on linearly independent solutions of the homogeneous version of the latter
equation generates a Laguerre transformation of the surface. The Weierstrass
representation of the surfaces which are both L-isothermic and L-minimal is
presented.

PACS numbers: 02.40.Hw, 02.30.Hq, 02.30.Jr, 02.20.Sv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Surfaces with isothermic representation of their lines of curvature (L-isothermic surfaces)
appear naturally in the context of Laguerre geometry as a subgeometry of Lie sphere geometry
[2]. They are defined by the requirement that the lines of curvature are conformal with respect
to the third fundamental form gIII of the surface. The explicit study of such surfaces goes back
to the work of Blaschke [1]. He also investigated the variational problem for the functional
W = ∫

(H2/K − 1) dV induced by immersed surfaces. Critical points of W are called L-
minimal surfaces. In recent times E Musso and L Nicolodi used the Cartan method of moving
frames to describe surfaces in Laguerre geometry. Their considerations were based on the
space � = E

3 × S2 of contact elements of E
3. In a series of interesting articles [6–12] they

reveal many features of L-isothermic and L-minimal surfaces (Cauchy problem, deformations,
Bianchi–Darboux transform). It should also be remarked that the integrability aspects of Lie
sphere geometry have been studied by Ferapontov [5].

On the other hand L-isothermic surfaces occur in mathematical physics. It has recently
been shown that classical shell membranes for which the stress resultants are not uniquely
determined are necessarily L-isothermic surfaces [17, 19]. They are also incorporated in
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the system of equilibrium equations in liquid crystal theory [18]. In addition the Laguerre
geometry, L-isothermic and L-minimal surfaces have also found applications in computer-
aided geometric design (CAGD), computational geometry [14] and even architecture [15].

In sections 2 and 3 we recall the geometry of two-dimensional surfaces embedded in
three-dimensional Euclidean space E

3 and the basic construction of L-isothermic surfaces
[19]. The Laguerre transformations of the surfaces are discussed in section 4. In section 5,
the Weierstrass representation of the surfaces which are both L-isothermic and L-minimal is
derived. Two examples are presented in section 6.

2. Geometry of two-dimensional surfaces in Euclidean space

We describe the geometry of a two-dimensional surface Σ embedded in a three-dimensional
Euclidean space E

3 using a moving frame. Therefore, there is a right-handed orthonormal
frame e = (e1, e2, e3)

T attached to each point of E
3. We choose a moving frame e at each

point r of Σ such that e3 = N is the normal to Σ. Then e1 and e2 are two tangent vectors to
Σ at each point. Since dr is a vector tangent to the surface, it must decompose into tangent
vectors

dr = A1e1 + A2e2, (2.1)

where A1, A2 are 1-forms. Equation (2.1) is the first structure equation of the surface. The
second one consists of differentials of frame e,

de + Ωe = 0, (2.2)

where Ω is an antisymmetric matrix of 1-forms. The integrability conditions of (2.1) and (2.2)
reduce to

dA + Ω ∧ A = 0, A = (A1, A2, 0)T , (2.3)

dΩ + Ω ∧ Ω = 0. (2.4)

Writing matrix Ω in the following way

Ω =
⎛
⎝ 0 −ω12 −ω13

ω12 0 −ω23

ω13 ω23 0

⎞
⎠ (2.5)

allows us to rewrite the structure equations (2.1)–(2.2) and the integrability conditions (2.4):

Structureequations Integrabilityconditions

dr = A1e1 + A2e2, dA1 = ω12 ∧ A2, (2.6)

de1 = ω12e2 + ω13e3, dA2 = −ω12 ∧ A1, (2.7)

de2 = −ω12e1 + ω23e3, ω13 ∧ A1 + ω23 ∧ A2 = 0, (2.8)

de3 = −ω13e1 − ω23e2, dω12 = ω23 ∧ ω13, (2.9)

dω13 = ω12 ∧ ω23, (2.10)

dω23 = ω13 ∧ ω12. (2.11)

The first and second fundamental forms induced on the surface are given by

gI = dr · dr = A1 ⊗ A1 + A2 ⊗ A2, (2.12)

gII = −dr · dN = A1 ⊗ ω13 + A2 ⊗ ω23, (2.13)
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where dot · denotes a scalar product in E
3. Since the normal vector defines a map r �→ N on

Σ into a two-dimensional sphere S2, the following form

gIII = dN · dN = ω13 ⊗ ω13 + ω23 ⊗ ω23 (2.14)

is a metric on the sphere, called the third fundamental form of the surface.
Aside from umbilical points the second fundamental form has two distinct eigenvalues:

κ1 and κ2 with respect to gI at every point. The functions κ1 and κ2 are called the principal
curvatures of Σ. Therefore,

ω13 = κ1A1, ω23 = κ2A2 (2.15)

and the second and third fundamental forms can be expressed as

gII = κ1A1 ⊗ A1 + κ2A2 ⊗ A2, (2.16)

gIII = κ2
1 A1 ⊗ A1 + κ2

2 A2 ⊗ A2. (2.17)

Choosing the local coordinates (α, β) there exist two functions A1 = A1(α, β) and
A2 = A2(α, β) such that

A1 = A1 dα, A2 = A2 dβ. (2.18)

Consequently,

ω12 = −A1β

A2
dα +

A2α

A1
dβ (2.19)

and the integrability conditions (2.6)–(2.8) are automatically satisfied, while (2.9)–(2.11)
reduce to the Gauss–Mainardi–Codazzi equations

A1A2κ1κ2 +

(
A2α

A1

)
α

+

(
A1β

A2

)
β

= 0, (2.20)

κ2α +
A2α

A2
(κ2 − κ1) = 0, (2.21)

κ1β +
A1β

A1
(κ1 − κ2) = 0, (2.22)

where α and β in subscripts denote partial derivatives. Now the three forms (2.12)–(2.14) are

gI = A2
1 dα2 + A2

2 dβ2, (2.23)

gII = A2
1κ1 dα2 + A2

2κ2 dβ2, (2.24)

gIII = A2
1κ

2
1 dα2 + A2

2κ
2
2 dβ2. (2.25)

The first and second fundamental forms gI , gII are purely diagonal and (α, β) are said to
constitute the curvature coordinates. It is readily seen that the third fundamental form can be
expressed in terms of gI and gII :

gIII = 2HgII − KgI , (2.26)

where

H = 1
2 (κ1 + κ2), K = κ1κ2 (2.27)

are the mean and Gauss curvatures of the surface Σ.

3



J. Phys. A: Math. Theor. 42 (2009) 115203 A Szereszewski

3. L-isothermic surfaces

The assumption that a surface is L-isothermic (has an isothermic representation of its lines of
curvature) is equivalent to the following condition:(

log

∣∣∣∣A1κ1

A2κ2

∣∣∣∣
)

αβ

= 0, (3.1)

which by suitable reparametrization of the lines of curvature may be replaced by A1κ1 =
±A2κ2. Here we proceed further with the following constraint:

A1κ1 = A2κ2. (3.2)

The geometry of two-dimensional surfaces for which condition (3.2) is satisfied can
be described by an ordinary nonhomogeneous second-order differential equation with
nonhomogeneity given by solution of another equation. The derivation of the equations
was described in [19]. Here, we recall it using the same notation. It is advantageous to
introduce a new function θ ,

eθ = −A1κ1 = −A2κ2 (3.3)

and reduce the Gauss-Mainardi-Codazzi equations (2.20)–(2.22) to the following form:

A2α = A1θα, A1β = A2θβ, (3.4)

θαα + θββ + e2θ = 0. (3.5)

It is observed that equations (3.4) are invariant with respect to the following Lie-point
symmetries

A1 �→ A′
1 = A1 + c1 eθ + c2 e−θ ,

A2 �→ A′
2 = A2 + c1 eθ − c2 e−θ ,

(3.6)

where c1, c2 ∈ R. The geometric interpretation of transformations (3.6) will be given in the
following section.

When (3.3) is substituted in (2.25) the latter is reducible to

gIII = e2θ (dα2 + dβ2), (3.7)

so that the third fundamental form is conformally flat in the coordinate system (α, β). The
general solution of the Liouville equation (3.5) is given by

eθ = 2|ρz|
1 + ρρ̄

, (3.8)

where ρ = ρ(z) is an arbitrary holomorphic function of complex coordinate z = α + iβ.
Rewriting ρ using the two holomorphic functions �1(z) �= 0 and �2(z),

ρ = �2

�1
, (3.9)

subject to the Wronskian condition

�1�2z − �1z�2 = 1 (3.10)

we find that (3.8) may be written in the form

e−θ = 1
2 (|�1|2 + |�2|2). (3.11)

4
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If we define a holomorphic function U(z) according to

U = −�1zz

�1
(3.12)

then �1 is a solution of the linear ordinary second-order differential equation

�zz + U� = 0 (3.13)

with potential U. On use of (3.10), it can be shown that the function �2 is the second solution
of (3.13), linearly independent of �1. Moreover the potential U can be calculated from ρ

U = 1
2 {ρ, z}, (3.14)

where {·, ·} is a Schwarzian derivative defined by

{ρ, z} =
(

ρzz

ρz

)
z

− 1

2

(
ρzz

ρz

)2

.

Therefore, the general solution (3.8) of the Liouville equation (3.5) may be expressed in terms
of two holomorphic solutions �1 �= 0 and �2 of equation (3.13) subject to the Wronskian
condition (3.10) with an arbitrary potential U(z).

To find the position vector r to the surface Σ, we exploit the tangential coordinate

b = r · N, (3.15)

which is the distance of the tangent plane to Σ from the origin. The following proposition has
been given in [19].

Proposition 1. Let T0 = T0(z, z̄) be a real particular solution of the complex inhomogeneous
equation

Tzz + UT = P

4
, (3.16)

where U = U(z) is an arbitrary holomorphic function of z = α + iβ and P = P(z, z̄) is a real
solution of the Moutard equation

Pαβ = 2P Im U. (3.17)

If �1 and �2 are two linearly independent solutions of homogeneous version of (3.16) then
the position vector r of a class of parallel surfaces in E

3 with isothermic representation of its
lines of curvature (L-minimal surfaces) adopts the form

r = e−θbzI + e−θbz̄Ī + bN, (3.18)

where the tangential coordinate b is given by

b = eθT0 + b, b ∈ R (3.19)

and θ is defined by (3.11). The unit tangent vectors X, Y and the normal vector N are
determined by

I = X + iY = 1

|�1|2 + |�2|2

⎛
⎝ �2

2 − �2
1

i
(
�2

1 + �2
2

)
2�1�2

⎞
⎠ ,

N = − 1

|�1|2 + |�2|2

⎛
⎝ �1�̄2 + �̄1�2

i(�̄1�2 − �1�̄2)

|�1|2 − |�2|2

⎞
⎠ .

(3.20)
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The coefficients of the first fundamental form (2.23) can be calculated from

P = A1 − A2, (3.21)

R = A1 + A2, (3.22)

where

R = 4 e−θbzz̄ + 2 eθb. (3.23)

It should be noted that the real solution to equation (3.16) always exists. In fact
equation (3.17) is a necessary and sufficient condition for existence of a real solution to
(3.16). The derivation of formulae (3.20) for I and N has been described in [19]. It should
be remarked that the potential U in equation (3.17) is always defined up to addition of a real
constant. It can be shown that this constant corresponds to a parameter in the transformation
of an orthogonal net with an isothermic spherical representation considered by Bianchi and
Eisenhart [3].

4. Laguerre transformation

We observe that if T0 is a real solution of (3.16), so also is

T ′
0 = T0 + a1|�1|2 + a2�1�̄2 + ā2�̄1�2 + a3|�2|2, (4.1)

where a1, a3 are real constants and a2 is a complex constant. There is also a freedom in �1

and �2. In fact, any linear combination of �1,�2(
�1

�2

)
�→

(
�′

1

�′
2

)
= S

(
�1

�2

)
, S =

(
s1 s2

s3 s4

)
∈ SL(2, C) (4.2)

gives rise to another surface. The full interpretation of transformations (4.1) and (4.2) will
be given in this section. According to proposition 1, any real particular solution of (3.16)
determines the tex-parameter class of surfaces defined by

b′ = 2(T0 + a1|�1|2 + a2�1�̄2 + ā2�̄1�2 + a3|�2|2)
|�1|2 + |�2|2 , (4.3)

where �1,�2 can undergo the linear transformation (4.2). It will be shown that the constants
ai (i = 1, 2, 3) do not change the class of parallel surfaces. Hence b can be always defined
by (3.19), as it stands in proposition 1. For any ten real parameters: ai (i = 1, 2, 3) and
sj (j = 1, 2, 3, 4) the third fundamental form (3.7) is conformally flat in (α, β), so we may
expect that these parameters correspond to ten-dimensional Laguerre group.

We recall the definition of Laguerre transformation [1, 2, 5]. Consider a six-dimensional
space R

6 with the scalar product h of signature (− + + + +−) and the Lie quadric L defined by

R
6 ⊃ L = {v ∈ R

6|h(v, v) = 0}. (4.4)

We can associate a sphere Sph(p,R) in E
3 of radius R and center p with any point of L

Sph(p,R) �
(

1 + p2 − R2

2
,

1 − p2 + R2

2
, p,R

)
∈ L. (4.5)

A pair of two-dimensional submanifolds

ξ =
(

1 + r2 + 2ρ1b

2
,

1 − r2 − 2ρ1b

2
, r + ρ1N, ρ1

)
, (4.6)

6
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η =
(

1 + r2 + 2ρ2b

2
,

1 − r2 − 2ρ2b

2
, r + ρ2N, ρ2

)
(4.7)

of L corresponds to two-dimensional surface r with curvature spheres: Sph(r +
ρ1N, ρ1), Sph(r+ρ2N, ρ2), where ρ1 = 1

κ1
and ρ2 = 1

κ2
denote the radii of principal curvature

and b is defined in (3.15). The Laguerre group is a subgroup of SO(2, 4) acting in R
6 and it is

isomorphic to ten-dimensional group R
4
�SO(1, 3). Therefore, there exists a correspondence

between the parameters ai, sj (i = 1, 2, 3, j = 1, 2, 3, 4) and the ten parameters of the
Poincaré Lie algebra g = R

4 +⊃ so(1, 3). The lie algebra g naturally occurs in special theory
of relativity and thus we use terms which come from it (translation, boost, dilation).

Let r be a position vector (3.18) of a surface defined by T0 (a real solution of
inhomogeneous equation (3.16)) and functions �1,�2. The transformations of r can be
determined as follows.

(i) Translation in space (the transformation generated by the Abelian three-dimensional
subalgebra R

3 ⊂ g)
The transformation⎧⎨

⎩
T0 �→ T ′

0 = T0 + a1(|�1|2 − |�2|2) + a2�1�̄2 + ā2�̄1�2

�1 �→ �′
1 = �1

�2 �→ �′
2 = �2

(4.8)

corresponds to translation of the surface in E
3

r �→ r′ = r +

⎛
⎝−2 Re a2

2 Im a2

−2a1

⎞
⎠ . (4.9)

(ii) Rotation in space (the transformation generated by the subalgebra so(3) ⊂ g)
The transformation⎧⎨
⎩

T0 �→ T ′
0 = T0(

�1

�2

)
�→

(
�′

1

�′
2

)
= SR

(
�1

�2

)
, SR ∈ SU(2) ⊂ SL(2, C)

(4.10)

corresponds to rotation of the surface in E
3

r �→ r′ = Mr, M ∈ SO(3). (4.11)

(iii) Dilation (the transformation generated by one-dimensional subalgebra R
1 ⊂ g)

The transformation⎧⎨
⎩

T0 �→ T ′
0 = T0 + a1(|�1|2 + |�2|2) = T0 + 2a1 e−θ

�1 �→ �′
1 = �1

�2 �→ �′
2 = �2

(4.12)

corresponds to the following transformation of a surface:

r �→ r′ = r + 2a1N. (4.13)

Therefore, (4.12) adds the constant 2a1 to the foliation parameter: b �→ b′ = b + 2a1.
Note that this transformation does not alter P but changes R �→ R′ = R + 4a1 eθ

(cf (3.23)). The Lie-point symmetry (3.6) for c1 = 2a1 and c2 = 0 corresponds to (4.13).

7
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(iv) Boost
The transformation⎧⎨

⎩
T0 �→ T ′

0 = T0(
�1

�2

)
�→

(
�′

1

�′
2

)
= SL

(
�1

�2

)
,

(4.14)

where

SL =
(

cosh
(

n
2

) − sinh
(

n
2

)
n3 −sinh

(
n
2

)
(n1 + in2)

−sinh
(

n
2

)
(n1 − in2) cosh

(
n
2

)
+ sinh

(
n
2

)
n3

)
∈ SL(2, C) (4.15)

corresponds to the following transformation of a surface:

r �→ r′ = r − sinh(n)N + (cosh(n) − 1)n

cosh(n) + sinh(n)N · n
r · n, (4.16)

where n ∈ R and n = (n1, n2, n3) is a constant real unit vector. Here, we set b = 0
in definition (3.19) of b1. The transformation of the tangent and normal vectors of the
surface can be found in appendix A.

5. Weierstrass representation of L-isothermic surfaces which are L-minimal

The two simplest examples: (i) a sphere and (ii) a minimal surface correspond to the following
solutions of Mainardi–Codazzi equations (3.4):

(i) A1 = A2 = eθ ⇒ P = 0,
(ii) A1 = −A2 = e−θ ⇒ P = 2e−θ .

In the former case (i) the particular solution T0 = 0 (b = b = const) and the position
vector of the sphere reads

r = bN. (5.1)

In the latter case the position vector of the class of surfaces parallel to the minimal surface
adopts the form

r = Re

⎛
⎝

∫ (
�2

2 − �2
1

)
dz

i
∫ (

�2
1 + �2

2

)
dz

2
∫

�1�2 dz

⎞
⎠ + bN. (5.2)

The minimal surface is given by (5.2) with b = 0. This result allows one to interpret the
Lie-point symmetry (3.6) for c1 = 0. If r0 is the position vector of a surface Σ0 defined by
functions P,�1 and �2 then the following transformation

P �→ P ′ = P + 2c2 e−θ , R �→ R′ = R (5.3)

corresponds to the transformation of the surface

r0 �→ r′ = r0 + rmin, (5.4)

where

rmin = c2

2
Re

⎛
⎝

∫ (
�2

2 − �2
1

)
dz

i
∫ (

�2
1 + �2

2

)
dz

2
∫

�1�2 dz

⎞
⎠ (5.5)

is a minimal surface with tangent planes parallel to tangent planes to the surface Σ0.

1 Note that for any given surface, b can be always set to zero by suitable redefinition of T0 in (3.19).
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From equation (3.17) it is seen that an additional constraint on P may imply a constraint
on potential U. If

(
P n

)
αβ

= 0 then U = 1
n

(
1 − 1

n

)
℘(z) + const, where ℘(z) is the Weierstrass

elliptic function and (3.13) reduces to the Lamé equation. The case n = 2 has been described
in [19], while n = 1 corresponds to surfaces with plane lines of curvature [4, 10]. If P depends
on one variable only the surfaces are necessarily canal surfaces (they were called generalized
Dupin cyclides in [20]). The condition P = const is the necessary and sufficient condition for
a surface to be a Dupin cyclide [19].

The L-minimal surfaces are analogs of the minimal surfaces in Euclidean space. They
are defined as surfaces which satisfy the fourth-order differential equation


III

(
H
K

)
= 0, (5.6)

where 
III is a Laplace operator with respect to the third fundamental form and H,K are the
mean and Gauss curvatures. The method described in proposition 1 allows one to find the
position vector of L-isothermic surfaces which are L-minimal.

Proposition 2. The L-isothermic surfaces, associated with potential U, are L-minimal if P
satisfies

Pzz + UP = 0. (5.7)

Proof. According to (3.7) the Laplace operator 
III is given by 
III = 4e−2θ ∂zz̄ and the
ratio H/K can be rewritten in the following way (cf (3.3)):

H
K

= −1

2
R e−θ . (5.8)

By virtue of Mainardi equations: (e−θR)z̄ = e−2θ (eθP )z, it is readily seen that (5.6) can be
reduced to

Pzz − eθ (e−θ )zzP = 0 (5.9)

which, on use of (3.11) and (3.12), is equivalent to (5.7)2. �

According to proposition 2 the function P can be expressed in terms of �1 and �2

(solutions of (3.13))

P = m1|�1|2 + m2�1�̄2 + m̄2�̄1�2 + m3|�2|2, (5.10)

where m1,m3 ∈ R and m2 ∈ C. Using a linear transformation of �1 and �2 (which
corresponds to the Laguerre transformation of a surface) the nonzero Hermitian form (5.10)
can be always reduced to the following form:

P = |�1|2 + ε|�2|2, (5.11)

where ε = −1, 0, 1. The multiplicative factor in P is omitted without loss of generality.

Proposition 3. Any surface which is both L-isothermic and L-minimal can be mapped (by the
Laguerre transformation) to one of the following three classes of surfaces:

(1) Surfaces whose central sphere congruence has centers lying in the plane z = 0 in E
3:

Lm1: r1 = Re

⎛
⎝−∫

(1 + ρ2)F (ρ) dρ

i
∫
(1 − ρ2)F (ρ) dρ

0

⎞
⎠ − (

2 Re
(∫

ρF(ρ) dρ
) − b

)
N, (5.12)

2 Note that the imaginary part of (5.7) is equivalent to (3.17), thus equation (5.7) does not imply any additional
constraints on the potential U.
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(2) Surfaces whose central sphere congruence is tangential to a fixed plane z = b in E
3:

Lm2: r2 = Re

⎛
⎝− ∫

F(ρ) dρ

i
∫

F(ρ) dρ∫
ρF(ρ) dρ

⎞
⎠ − (

Re
(∫

ρF(ρ) dρ
) − b

)
N, (5.13)

(3) Surfaces parallel to minimal surfaces:

r3 = Re

⎛
⎝

∫
(ρ2 − 1)F (ρ) dρ

i
∫
(ρ2 + 1)F (ρ) dρ

2
∫

ρF(ρ) dρ

⎞
⎠ + bN, (5.14)

where F(ρ) is an arbitrary holomorphic function of ρ, and N is given by

N = − 1

1 + ρρ̄

⎛
⎝ ρ + ρ̄

i(ρ − ρ̄)

1 − ρρ̄

⎞
⎠ . (5.15)

Proof. The proof of this proposition is by construction. By the method of variation of
parameters, the real particular solution of the complex inhomogeneous equation (3.16) with
P given by (5.11) reads [21]

T0 = 1

4

(
�̄1�2

∫
�2

1 dz − (|�1|2 − ε|�2|2)
∫

�1�2 dz − ε�1�̄2

∫
�2

2 dz

+ �1�̄2

∫
�̄2

1 dz̄ − (|�1|2 − ε|�2|2)
∫

�̄1�̄2 dz̄ − ε�̄1�2

∫
�̄2

2 dz̄

)
. (5.16)

According to proposition 1, the position vector adopts the form

r = 1

2
Re

⎛
⎝

∫ (−�2
1 + ε�2

2

)
dz

i
∫ (

�2
1 + ε�2

2

)
dz

(1 + ε)
∫

�1�2 dz

⎞
⎠ +

(
ε − 1

2
Re

(∫
�1�2 dz

)
+ b

)
N (5.17)

where N is defined in (3.20). It is now convenient to change the coordinate z by taking
ρ = ρ(z) defined by (3.9) with dz = �2

1 dρ. Thus, the integrals contained in (5.17) can be
expressed in the form∫

�2
1 dz = 2

∫
F(ρ) dρ,

∫
�1�2 dz = 2

∫
ρF(ρ) dρ,

∫
�2

2 dz = 2
∫

ρ2F(ρ) dρ,

(5.18)

where

F(ρ) = 1
2�4

1. (5.19)

The formulae (5.12)–(5.14) are obtained by substituting (5.18) into (5.17) and specifying
ε = −1, 0, 1. �

The classification of L-isothermic surfaces which are also L-minimal presented in
proposition 3 was already known to Blaschke [1] (see also [7]). The first, second and
third fundamental forms of the L-minimal surfaces (5.12)–(5.14) are given in appendix B. It
is readily verified that these surfaces are related by the linear condition:

r3 = 2r2 − r1. (5.20)

It is remarked that some known surfaces may be retrieved from (5.12) or (5.13) by
choosing proper functions F(ρ) (for instance, putting F(ρ) = 1

2 e2ρ in (5.13) the surface
(6.36) from [19] is obtained. The same surface appears also in [16] (cf (40) therein)).

10
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Figure 1. L-minimal helicoids: Lm1 (left) and Lm2 (right).

Figure 2. L-minimal surfaces of Henneberg: Lm1 (left) and Lm2 (right).

6. Examples: L-minimal helicoids and L-minimal surfaces of Henneberg

The helicoid is the minimal surface with Weierstrass representation associated with F(ρ) = i
ρ2 .

Two L-minimal surfaces Lm1,Lm2 related to helicoid can be parametrized in the following
way:

Lm1 − helicoid: r1(u, v) =
⎛
⎝−2 cosh u sin v

2 cosh u cos v

0

⎞
⎠ +

2v

cosh u

⎛
⎝ cos v

sin v

sinh u

⎞
⎠ , (6.1)

Lm2 − helicoid: r2(u, v) =
⎛
⎝−eu sin v

eu cos v

v

⎞
⎠ +

v

cosh u

⎛
⎝ cos v

sin v

sinh u

⎞
⎠ . (6.2)

They are displayed in figure 1. The minimal surface of Henneberg corresponds to
F(ρ) = 1 − 1

ρ4 . The L-minimal surfaces associated with it are given by (see figure 2)
11
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Lm1 − Henneberg:

r1(u, v) = 2

3

⎛
⎝−3 cosh u cos v − cosh 3u cos 3v

−3 cosh u sin v + cosh 3u sin 3v

0

⎞
⎠ − 2 cosh 2u cos 2v

cosh u

⎛
⎝−cos v

sin v

sinh u

⎞
⎠ , (6.3)

Lm2 − Henneberg:

r2(u, v) = 1

3

⎛
⎝−3eu cos v − e−3u cos 3v

−3eu sin v + e−3u sin 3v

3 cosh 2u cos 2v

⎞
⎠ − cosh 2u cos 2v

cosh u

⎛
⎝−cos v

sin v

sinh u

⎞
⎠ . (6.4)
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Appendix A

The mapping (4.16) induces the following transformation of the tangent, I, and normal, N,
vectors of a surface:

I �→ I′ = I − sinh(n)N + (cosh(n) − 1)n

cosh(n) + sinh(n)N · n
I · n, (A.1)

N �→ N′ = N + sinh(n)n + (cosh(n) − 1)(N · n)n

cosh(n) + sinh(n)N · n
. (A.2)

The transformations of the other geometric quantities are given by

b �→ b′ = b

cosh(n) + sinh(n)N · n
, (A.3)

A1 �→ A′
1 = A1 − eθ sinh(n)r · n

cosh(n) + sinh(n)N · n
, (A.4)

A2 �→ A′
2 = A2 − eθ sinh(n)r · n

cosh(n) + sinh(n)N · n
. (A.5)

Appendix B

The geometric quantities of the set of L-minimal surfaces (5.12)–(5.14) are given by
(ε = −1, 0, 1)

the first fundamental form:

rρ · rρ = − 2F(ρ)

1 + ρρ̄
(1 + ερρ̄)

H
K

, (B.1)

rρ · rρ̄ = F(ρ)F̄ (ρ̄)

2
(1 + ερρ̄)2 +

2H2

K2(1 + ρρ̄)2
, (B.2)

12
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the second fundamental form:

rρ · Nρ = F(ρ)

1 + ρρ̄
(1 + ερρ̄), (B.3)

rρ · Nρ̄ = − 2H
K(1 + ρρ̄)2

, (B.4)

the third fundamental form:

gIII = 4 dρ dρ̄

(1 + ρρ̄)2
, (B.5)

where
H
K

= (1 − ε) Re
∫

ρF(ρ) dρ − b. (B.6)

It is noted that the position vector of the set of surfaces (5.12)–(5.14) can also be
represented in the form

r = W − H
K

N, (B.7)

where

W = Re

⎛
⎝− ∫

(1 − ερ2)F (ρ) dρ

i
∫
(1 + ερ2)F (ρ) dρ

(1 + ε)
∫

ρF(ρ) dρ

⎞
⎠ , (B.8)

the ratio H/K is given in (B.6) and N is defined in (5.15). For each point of the surface r, W

represents the sphere of radius H
K = 1

2

(
1
κ1

+ 1
κ2

)
tangent to the surface r at this point.
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